Basic Facts (+/-) Assessment Charts and Lesson Booklet

Based on strategies from John Van de Walle's book, "Elementary and Middle School Mathematics: Teaching developmentally"

Developed by Jeannie DeBoice \& Liz Jackson in SD62 (Sooke)

1. Progress charts
2. Class tracking sheets
3. Lessons

Use the 'test' cards (no icons) to check a student's mastery.
Highlight the known facts on the "My Progress" chart.
Assign the next cards for the student to practice: start with
'icon' cards (with pictures) then non-icon cards (test cards.)
Go through the strategies in this order:

1. Addition 'Anchors'
2. Subtraction 'Anchors'
3. Addition 'Using Anchors'
4. Subtraction 'Using Anchors'

BLM's for cards are
available from Jeannie DeBoice
(ideboice@uvic.ca
Cards printed on card stock and pre-cut available from Comox School District Print Shop.
Link to catalog p. 25:

Addition \& Subtraction Flash Cards

$21 / 2^{\prime \prime} \times 31 / 4^{\prime \prime}$, Printed on coloured bristol
(Created by Jeannie DeBoice from Sooke School District)

$\$ 9.00$

$\$ 10.00$

My Progress Chart for Addition

$\mathbf{+}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{1}$	1	$\mathbf{2}$	$\mathbf{3}$	4	5	6	7	8	9	10	11
$\mathbf{2}$	2	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\underline{6}$	7	8	9	10	11	12
$\mathbf{3}$	3	4	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\underline{8}$	9	10	11	12	13
$\mathbf{4}$	4	5	$\underline{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\underline{10}$	11	12	13	14
$\mathbf{5}$	5	6	7	$\underline{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\underline{12}$	13	14	15
$\mathbf{6}$	6	7	8	9	$\underline{10}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\underline{14}$	15	16
$\mathbf{7}$	7	8	9	10	11	$\underline{12}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\underline{16}$	17
$\mathbf{8}$	8	9	10	11	12	13	$\underline{14}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\underline{18}$
$\mathbf{9}$	9	10	11	12	13	14	15	$\underline{16}$	$\mathbf{1 7}$	$\mathbf{1 8}$	19
$\mathbf{1 0}$	10	11	12	13	14	15	16	17	$\underline{18}$	19	$\mathbf{2 0}$

ANCHORS:
USING ANCHORS:
+0/0+
$+1 / 1+$
+2/2+
Doubles
+10/10+

								18-8	18-9	18-10
							17-7	17-8	17-9	17-10
						16-6	16-7	16-8	16-9	16-10
					15-5	15-6	15-7	15-8	15-9	15-10
				14-4	14-5	14-6	14-7	14-8	14-9	14-10
			13-3	13-4	13-5	13-6	13-7	13-8	13-9	13-10
		12-2	12-3	12-4	12-5	12-6	12-7	12-8	12-9	12-10
11-0	11-1	11-2	11-3	11-4	11-5	11-6	11-7	11-8	11-9	11-10
10-0	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10
9-0	9-1	9-2	9-3	9-4	9-5	9-6	9-7	9-8	9-9	
8-0	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8-8		
7-0	7-1	7-2	7-3	7-4	7-5	7-6	7-7			
6-0	6-1	6-2	6-3	$6-4$	6-5	6-6				
5-0	5-1	5-2	5-3	5-4	5-5					
4-0	4-1	4-2	4-3	4-4						
3-0	3-1	3-2	3-3							
2-0	2-1	2-2								
1-0	1-1									

Anchors:
Zero (-0; =0)
-1
-2
Doubles
l-apart/2- apart
Parts of 10
$-10 /=10$

Using Anchors:
 -9
 -8
 Back Down Thru 10

Jeannie DeBoice, Sooke District \#62, 2007 ($5^{\text {th }}$ ed.)

Class List for Div.__ Addition Strategy Mastery

Name:	Gr.	$\mathbf{+ 0}$	$\mathbf{+ 1}$	$\mathbf{+ 2}$	Doubles	$\mathbf{+ 1 0 / 1 0 +}$	Make $\mathbf{1 0 (+ 9)}$	Make $\mathbf{1 0 (+ 8)}$	Dbles $\mathbf{+ 1}$	2-apart doubles	Strat. Selection	

NOTE: Highlight initial assessment in YELLOW; highlight subsequent progress in a DIFFERENT COLOUR

Class List for Div.

Name:	Gr.	$-\mathbf{0 / = 0}$	$-\mathbf{1}$	$\mathbf{- 2}$	Doubles	$\mathbf{1 8 2}$ apart	Parts of 10	$-10 /$ =10	$\mathbf{- 9}$	$-\mathbf{8}$	Back Down

NOTE: Highlight initial assessment in YELLOW; highlight subsequent progress in a DIFFERENT COLOUR

Awesome Addition and

Strategic Subtraction!

Created by Jeannie Deboice \& Lizjackson
based on John van de Walle's book, "Teaching
student-centered Mathematics"

$$
\begin{gathered}
\text { Before you begin to teach Basic } \\
\text { Facts... }
\end{gathered}
$$

- It is critical that you always introduce a new concept (addition, subtractions) through a reallife problem.
- Work through several real-life, concrete problems involving the concept with as much real-life materials as you can.
- Then, to consolidate these concepts, begin to work with ten-frames (or other manips.)
- Finally, and most importantly, a child must stay at the semi-abstract level until they show they are ready to move on to the cards with icons.
How will I know when they're ready???

What to look for/how to check... (best done one-on-one)

- Child is using the counters, but is answering without moving them (i.e., build $8 \& 5$, but answers '13' without moving 2 counters over to the 8 to make a ten.)
- Try using the cards and see how they do. If theystruggle at all, bring out the ten-frame saying, "Your brain just needs more time building it." (May use cards \& real ten-frames together.)
- Have child close his eyes to visualize the tenframe and 'move counters in his mind'.

Addition Anchor Strategies:

1

$$
+1 /+2
$$

- Start with a real-life problem: "You have 5 cookies and Mom gives you 1 more. How many do you have?" AND "You have 1 cookie and Mom gives you 5 more.
- Build numbers $1-20$ on a double ten-frame, say 8 in one colour, adding 1 in another colour.
- Ask: "How much is 8 and 1?" Write 8+1=9 and $9=8+1$
- Remind them how this connects to ' 1 more than'
- Move to icon cards when you see that they are beginning to answer before adding the counter in.
- When full mastery of $+1 / 1+$ is shown, start again with +2/2+

+0/0+

- Start with a real-life problem: "Mom gives you 5 cookies and then she gives you no more. How many do you have?" (For some children, this is a hard concept!)
- Build numbers 1 - 20 on a double ten-frame. Ask, "How much is \qquad and 0 ?"
- Record 10+0 = 10 and $10=10+0$
- Write the equations
$9+0=\ldots$ and
$0+6=\ldots \quad \&$ have them solve it on the double tenframe.
- Help them come to the generalization that +0 doesn't change the number.

Doubles

Use a G'Nizer/Part-Whole mat:

- Build 5 in each of the two small sections.
- Ask students to push both 5's up. "How much is there all together?"
- Ask: "How do you know without counting?"
- "What in our world is 5 \& 5?" (our fingers!)
- Collect objects representing doubles and put them up on a bulletin board with the addition equations on strips beside each item.
- Connect the objects (e.g., egg carton, spider) to the icons on the cards and say:
" $6+6$ is the 'egg carton double' how much is $6+6$?"
The idea is to get them to visualize or even go over to the real thing...not to count the eggs in the picture!

Always relate back to the bulletin board of Doubles in your classroom.

+10/10+

- Use double ten-frames and 2coloured counters.
- Have students build 10 on the top ten-frame in one colour and 5 on the bottom ten-frame in another colour.
- Record '10 and 5 is \qquad
- Ask: "How many is 10 and 5 ?"
- Watch: some may just know, some may count on and some may count all.

Our aim is to help kids see the pattern - not count.

- Do this for about 5 equations, the stop and ask: "Do you see a pattern?" Circle the ' +5 ' and the ' 5 ' in 15.
- Repeat for 5 more equations, but this time put 10 on the bottom frame \& write
'8+10= _
- Redo this lesson another day, doing all the equations in order from +1 to +9

Subtraction Anchor Strategies:

- Start with a real-life

 problem: "You have 5 cookies and you give your sister 1. How many do you have now?"- Build numbers 1-20 on a double ten-frame. Ask: "How much is _take away 1 ?" Write $10-1=9$
- Remind them how this connects to ' 1 less than'.

$$
-1 /-2
$$

- Move to icon cards when you see evidence that they are beginning to answer before moving the counter away.
- When full mastery of -1 is shown using the symbol cards, start again with -2 .
*Some children will do this easily, while others will need a longer time with manips - hence the need to individualize.

$-0 /=0$

- Start with a real-life problem: "You have 5 cookies and you give zero to your sister. Now how many do you have?" (For some children, this is a hard concept!)
- Build numbers 1-20 on a double ten-frame. Ask: "How much is ___take away 0 ?"
- Write 10-0 = 10 and $10=10-0$
- Help them come to the generalization that -0 doesn't change the number.
- For $=\mathbf{0}$, start with 1-20 on the ten-frame, then create a story where all are subtracted. "How many have we got left?"
- Finally, write the equations $9-0=$ __ and
- $9-9=\quad$ on the board. Students solve on the ten-frame.

Subtraction Doubles

Use a G'Nizer:

- Build 6 \& 6 in 2 different colours on G'Nizer.
- Turn it so 12 (in the large section) is across the top.
- Have students show 12-6 by pulling 6 down into one section. Ask: "How much is left?" "How do you know that without counting?"
- Connect this to the Doubles icon of the egg carton and say: "An egg carton has 12 eggs. What if 6 were gone? How many are left? How do you know?"

- Continue with other Doubles.

1 \& 2 apart

- This is a great time to introduce the other concept of subtraction as difference.
- Have student build 10 on their ten-frame.
- Say: I had 10 cookies and gave my sister 9 . How many are left? What's the difference?"
- Record "10-9" on the board. Have them solve on the tenframe.
- Now say: I had 10 stuffies. My sister had 9 . What's the difference between my number of stuffies and hers?"
- Ask: "How far apart are 10 \& 9?"
- Make the connection between the ten-frame and the number line (ex. 10-9=1 and $10 \& 9$ are one apart one the number line.)
- In a later lesson, repeat for 2apart.

Parts of 10 -10/=10

Parts of 10:

- You will have done 're-naming' ten on the G'Nizer. Review this first with the students. ("Show me 10 is $1 \& 9,2 \& 8 . . . ")$
TIP: Set G'Nizer up with counters in 2 rows of 5 -like a tenframe!
- Relate these ideas to the tenframe by building 10, then ask: "What is 10-4? What's the other part of 10 ?"

$-10 /=10$

- Have students build a teen number (14) on a double tenframe.
- Record on the board.
- Now add "-10 = " and ask: "What's the quickest, easiest way to take off 10?" Most will wipe off the ten-frame.
- Do all the teens minus 10.
- Now write '14-4=_ ' and ask: "What's the quickest, easiest way to take off 4?"
- Do all the teens minus a single digit.

Note: do +9 lesson first. Later do +8 lesson.

- Use a double ten-frame.
- Build 9 with one colour and 6 with another colour.
- Say: "6+9 isn't very friendly. Which number is really close to 10 ? Can we make $9+6$ more friendly? (TIP: Have students put the rest of their counters away - otherwise, some may dip into the pot for a counter, making the 9 into a 10 but changing the value of the equation!)
- Most will take one from the 6 to make the 9 into a 10.
- *Using 2 colours really shows how 9+6 = 10+5
- Record 9+6 = 10+5 on the board and ask: Is this true? Can we write this?
- Show this equation on a 'number scale' to 'prove' the equality (also covering the algebra outcome!)

Doubles +1

- Have students lay out 6 yellow counters while you do the same on the Doc Cam.
- Have them arrange them into 2 parts (symetrically)
- Ask: "How much? What double is this?"
- Cover the Doc Cam and add 1 red to one the groups of 3 .
- Click the overhead on and say: "Can you still see the double? How can we figure out how much there is now without counting?"
- Have them show $3+4$ in the same way, with 1 red counter added to the double 3.

$$
\begin{gathered}
3+3=6 \\
\text { So } 3+4=7
\end{gathered}
$$

$$
3+4
$$

2-apart Doubles

- Have students lay out a group of 3 and a groups of 5 in the same colour side by side.
- Ask: "How far apart are these numbers?"
- May help to look on a number line to see that they are 2 apart.
- Say: "When we add 2apart numbers, there is a double hiding between these 2 numbers."
- Have children (and you model on overhead) move one from the larger set and give it to the smaller set.
- Ask: "What double is that?"
- Write $3+5=4+4$

Showing it of the number scale can reinforce this idea:

-9/-8

(Note: Do -9 lesson first. Do -8 in a later lesson.)

- Have students use a double ten-frame while you build on overhead.
- Have them build a teen number (14).
- Ask: "What's the quickest, easiest way to take off 9?" (8?)
- Have students discuss their strategy with a partner. See if partner did it the same was they did.

Be prepared for at least 2 different ways:

- Some will take off 9 (8) right out of the full tenframe.
- Others will clear off the smaller frame (4) then take the rest (5) from the full ten-frame.
- Scribe both ways on chart paper to keep for reference.

Back down thru 10

- Use a double ten-frame.
- Have students build a teen number between 11 - 16. (say 14)
- Ask: "What's the quickest, easiest way to take off 5?"
- Have students discuss with a partner to check who does it the same as they did.
- Do the others (see underlined facts of the assessment sheet.)

Be prepared for at least 2 different ways:

- Some will take off all of the lower frame (4) and one more from the 10.
- Others will take the 5 right out of the full tenframe.
For the most part, the more straight forward way is the first one.
- Scribe both (all!) ways on a chart to keep for reference.

Strategy Selection Practice

- Once a child has shown mastery of these strategies, they need to practice retrieving them. Otherwise, they won't use them automatically.
- Children us the Strategy Selection Boards in pairs. They shuffle the 'test cards' and turn one over.
- First they tell which strategy they'd use to solve the addition or subtraction, then they place the card in that solve and solve it.

